THE MIRACLE OF VITAMIN D
by: Sullivan, Krispin, CN

Krispin Sullivan is a researcher and clinical nutritionist in practice in Woodacre, California. She is currently working on a book, Naked at Noon: The Importance of Sunlight and Vitamin D, to be published in 2001. Testing for 25-Hydroxyvitamin D is very important to determine your levels. Instructions and further information is available from Krispin Sullivan, PO Box 961, Woodacre, California. Phone: 1-415-488-9636; Email krispin@krispin.com

In April of 2000, a clinical observation published in Archives of Internal Medicine caught my attention. Dr. Anu Prabhala and his colleagues reported on the treatment of five patients confined to wheelchairs with severe weakness and fatigue. Blood tests revealed that all suffered from severe vitamin D deficiency. The patients received 50,000 IU vitamin D per week and all became mobile within six weeks.
Dr. Prabhala's research sparked my interest and led to a search for current information on vitamin D, how it works, how much we really need and how we get it. The following is a small part of the important information that I found.

Any discussion of vitamin D must begin with the discoveries of the Canadian-born dentist Weston A. Price. In his masterpiece Nutrition and Physical Degeneration, Dr. Price noted that the diet of isolated, so-called "primitive" peoples contained "at least ten times" the amount of "fat-soluble vitamins" as the standard American diet of his day.(2) Dr. Price determined that it was the presence of plentiful amounts of fat-soluble vitamins A and D in the diet, along with calcium, phosphorus and other minerals, that conferred such high immunity to tooth decay and resistance to disease in non-industrialized population groups.

Today another Canadian researcher, Dr. Reinhold Vieth, argues convincingly that current vitamin D recommendations are woefully inadequate. The recommended dose of 200-400 international units (IU) will prevent rickets in children but does not come close to the optimum amount necessary for vibrant health.(3) According to Dr. Vieth, the minimal daily requirement of vitamin D should be in the range of 4,000 IU from all sources, rather than the 200-400 currently suggested, or ten times the Recommended Daily Allowance (RDA). Dr. Vieth's research perfectly matches Dr. Price's observations of sixty years ago!

VITAMIN D FROM SUNLIGHT
The reason it is difficult to get adequate vitamin D from sunlight is that while UV-A is present throughout the day, the amount of UV-B present has to do with the angle of the sun's rays.
Pick up any popular book on vitamins and you will read that ten minutes of daily exposure of the arms and legs to sunlight will supply us with all the vitamin D that we need. Humans do indeed manufacture vitamin D from cholesterol by the action of sunlight on the skin. But it is actually very difficult to obtain even a minimal amount of vitamin D with a brief foray into the sunlight.(4,5)
Ultraviolet (UV) light is divided into three bands or wavelength ranges, which are referred to as UV-C, UV-B and UV-A.(6)
UV-C is the most energetic and shortest of the UV bands. It will burn human skin rapidly in extremely small doses. Fortunately, it is completely absorbed by the ozone layer. However, UV-C is present in some lights. For this reason, fluorescent and halogen and other specialty lights may contribute to skin cancer.
UV-A known as the "tanning ray", is primarily responsible for darkening the pigment in our skin. Most tanning bulbs have a high UV-A output, with a small percentage of UV-B. UV-A is less energetic than UV-B, so exposure to UV-A will not result in a burn, unless the skin is photosensitive or excessive doses are used. UV-A penetrates more deeply into the skin than UV-B, due to its longer wavelength. Until recently, UV-A was not blocked by sunscreens. It is now considered to be a major contributor to the high incidence of non-melanoma skin cancers.(7) Seventy-eight percent of UV-A penetrates glass so windows do not offer protection.
UV-B The ultraviolet wavelength that stimulates our bodies to produce vitamin D is UV-B. It is sometimes called the "burning ray" because it is the primary cause of sunburn (erythema). However, UV-B initiates beneficial responses, stimulating the production of vitamin D that the body uses in many important processes. Although UV-B causes sunburn, it also causes special skin cells called melanocytes to produce melanin, which is protective. UV-B also stimulates the production of Melanocyte Stimulating Hormone (MSH), an important hormone in weight loss and energy production.(8)
The reason it is difficult to get adequate vitamin D from sunlight is that while UV-A is present throughout the day, the amount of UV-B present has to do with the angle of the sun's rays. Thus, at higher latitudes, UV-B is present only during midday hours and only has significant intensity in temperate or tropical latitudes. Only 5 percent of the UV-B light range goes through glass and it does not penetrate clouds, smog or fog.
Sun exposure at higher latitudes before 10 am or after 2 pm will cause burning from UV-A before it will supply adequate vitamin D from UV-B. This finding may surprise you, as it did the researchers. It means that sunning must occur between the hours we have been told to avoid. Only sunning between 10 am and 2 pm during summer months (or winter months in southern latitudes) for 20-120 minutes, depending on skin type and color, will form adequate vitamin D before burning occurs.(9)
It takes about 24 hours for UV-B-stimulated vitamin D to show up as maximum levels of vitamin D in the blood. Cholesterol-containing body oils are critical to this absorption process.(10) Because the body needs 30-60 minutes to absorb these vitamin-D-containing oils, it is best to delay showering or bathing for one hour after exposure. The skin oils in which vitamin D is produced can also be removed by chlorine in swimming pools.
The current suggested exposure of hands, face and arms for 10-20 minutes, three times a week, provides only 200-400 IU of vitamin D each time or about 100-200 IU per day during the summer months. In order to achieve optimal levels of vitamin D, 85 percent of body surface needs exposure to prime midday sun. (About 100-200 IU of vitamin D is produced for each 5 percent of body surface exposed.) Light skinned people need 10-20 minutes of exposure while dark skinned people need 90-120 minutes.11
Latitude and altitude determine the intensity of UV light. UV-B is stronger at higher altitudes. Latitudes higher than 30 (both north and south) have insufficient UV-B sunlight two to six months of the year, even at midday.12 Latitudes higher than 40 have insufficient sunlight to achieve optimum levels of D during six to eight months of the year. In much of the US, which is between 30 and 45 latitude, six months or more during each year have insufficient UV-B sunlight to produce optimal D levels. In far northern or southern locations, latitudes 45 and higher, even summer sun is too weak to provide optimum levels of vitamin D.13-15 A simple meter is available to determine UV-B levels where you live.

VITAMIN D FROM FOOD
What the research on vitamin D tells us is that unless you are a farmer, lifeguard or a regular sunbather, you are highly unlikely to obtain adequate amounts of vitamin D from the sun. The balance must be obtained from food. So-called primitive peoples instinctively chose vitamin -D-rich foods including the intestines, organ meats, skin and fat from certain land animals, as well as shellfish, oily fish and insects. Many of these foods are unacceptable to the modern palate.
Fish make vitamin D from the precursor of vitamin D found in algae. In the higher mammals, vitamin D is made from precursors in lichen and green grass. Reindeer fat, for example, is a good source of vitamin D because reindeer feed on lichen.16 Vitamin D will be found in the butterfat of ruminant animals that feed on green grass, and in pigs that spend time in the sunlight. (Pigs resemble humans in that they convert sunlight to vitamin D.) Eggs will contain vitamin D if the chickens have obtained it from insects or fishmeal. Salmon must feed on algae in order to store vitamin D in their fat. Thus, modern farm-raised salmon are poor sources of this essential nutrient.
Modern diets usually do not provide adequate amounts of vitamin D2;17 because of the trend to low-fat foods since we no longer eat vitamin-D-rich foods like kippers, tripe, chitterlings and lard. Deficiencies are therefore pervasive and widespread.

FOOD SOURCES OF VITAMIN D
So-called primitive peoples instinctively chose vitamin-D-rich foods including the intestines, organ meats, skin and fat from certain land animals, as well as shellfish, oily fish and insects.
USDA databases compiled in the 1980s list foods rich in vitamin D. The amounts given below are for 100 grams or about 3 1/2 ounces. These figures demonstrate the difficulty in obtaining 4,000 IU vitamin D per day from ordinary foods in the American diet. Three servings of herring, oysters, catfish, mackerel or sardines plus generous amounts of butter, egg yolk, lard or bacon fat and 2 teaspoons cod liver oil yield about 4,000 IU vitamin D - a very rich diet indeed!
Cod liver oil 10,000; Lard (pork fat) 2,800; Atlantic herring (Pickled) 680; Egg Yolk 148; Butter 56.

VITAMIN D MIRACLES
Sunlight and vitamin D are critical to all life forms. Standard textbooks state that the principal function of vitamin D is to promote calcium absorption in the gut and calcium transfer across cell membranes, thus contributing to strong bones and a calm, contented nervous system. It is also well recognized that vitamin D aids in the absorption of magnesium, iron and zinc, as well as calcium.
Actually, vitamin D does not in itself promote healthy bone. Vitamin D controls the levels of calcium in the blood. If there is not enough calcium in the diet, then it will be drawn from the bone. High levels of vitamin D (from the diet or from sunlight) will actually demineralize bone if sufficient calcium is not present.
Vitamin D will also enhance the uptake of toxic metals like lead, cadmium, aluminum and strontium if calcium, magnesium and phosphorus are not present in adequate amounts.18 Vitamin D supplementation should never be suggested without calcium and magnesium supplementation at the same time.
Receptors for vitamin D are found in most of the cells in the body and during the 1980s there was considerable speculation that vitamin D contributed to a healthy immune system, promoted muscle strength, regulated the maturation process and contributed to hormone production.
During the last ten years, researchers have made a number of exciting discoveries about vitamin D. They have ascertained, for example, that vitamin D is an antioxidant that is a more effective antioxidant than vitamin E in reducing lipid peroxidation and increasing enzymes that protect against oxidation.19-20
Vitamin D deficiency decreases biosynthesis and release of insulin.21 Glucose intolerance has been inversely associated with the concentration of vitamin D in the blood. Thus, vitamin D may protect against both Type I and Type II diabetes.22
The risk of senile cataract is reduced in persons with optimal levels of D and carotenoids.23
PCOS (Polycystic Ovarian Syndrome) has been corrected by supplementation of D and calcium.24
Vitamin D plays a role in regulation of both the "infectious" immune system and the "inflammatory" immune system.25
Low vitamin D is associated with several autoimmune diseases including multiple sclerosis, Sjogren's Syndrome, rheumatoid arthritis, thyroiditis and Crohn's disease.26;27
Osteoporosis is strongly associated with low vitamin D. Postmenopausal women with osteoporosis respond favorably (and rapidly) to higher levels of D plus calcium and mangnesium.28
D deficiency has been mistaken for fibromyalgia, chronic fatigue or peripheral neuropathy.1;28-30
Infertility is associated with low vitamin D.31 Vitamin D supports production of estrogen in men and women.32 PMS has been completely reversed by addition of calcium, magnesium and vitamin D.33 Menstrual migraine is associated with low levels of vitamin D and calcium.81
Breast, prostate, skin and colon cancer have a strong association with low levels of D and lack of sunlight.34-38
Activated vitamin D in the adrenal gland regulates tyrosine hydroxylase, the rate limiting enzyme necessary for the production of dopamine, epinephrine and norepinephrine. Low D may contribute to chronic fatigue and depression.39
Seasonal Affective Disorder has been treated successfully with vitamin D. In a recent study covering 30 days of treatment comparing vitamin D supplementation with two-hour daily use of light boxes, depression completely resolved in the D group but not in the light box group.40
High stress may increase the need for vitamin D or UV-B sunlight and calcium.41
People with Parkinson's and Alzheimer's have been found to have lower levels of vitamin D.42-43
Low levels of D, and perhaps calcium, in a pregnant mother and later in the child may be the contributing cause of "crooked teeth" and myopia. When these conditions are found in succeeding generations it means the genetics require higher levels of one or both nutrients to optimize health.44-47
Behavior and learning disorders respond well to D and/or calcium combined with an adequate diet and trace minerals.48-49

VITAMIN D AND HEART DISEASE
Ninety percent of men experiencing myocardial infarction had low hair calcium.
Research suggests that low levels of vitamin D may contribute to or be a cause of syndrome X with associated hypertension, obesity, diabetes and heart disease.50 Vitamin D regulates vitamin-D-binding proteins and some calcium-binding proteins, which are responsible for carrying calcium to the "right location" and protecting cells from damage by free calcium.51 Thus, high dietary levels of calcium, when D is insufficient, may contribute to calcification of the arteries, joints, kidney and perhaps even the brain.52-54
Many researchers have postulated that vitamin D deficiency leads to the deposition of calcium in the arteries and hence atherosclerosis, noting that northern countries have higher levels of cardiovascular disease and that more heart attacks occur in winter months.55-56
Scottish researchers found that calcium levels in the hair inversely correlated with arterial calcium - the more calcium or plaque in the arteries, the less calcium in the hair. Ninety percent of men experiencing myocardial infarction had low hair calcium, When vitamin D was administered, the amount of calcium in the beard went up and this rise continued as long as vitamin D was consumed. Almost immediately after stopping supplementation, however, beard calcium fell to pre-supplement levels.27
Administration of dietary vitamin D or UV-B treatment has been shown to lower blood pressure, restore insulin sensitivity and lower cholesterol.58-60

THE BATTLE OF THE BULGE
Did you even wonder why some people can eat all they want and not get fat, while others are constantly battling extra pounds? The answer may have to do with vitamin D and calcium status. Sunlight, UV-B, and vitamin D normalize food intake and normalize blood sugar. Weight normalization is associated with higher levels of vitamin D and adequate calcium.61 Obesity is associated with vitamin-D deficiency.62-64 In fact, obese persons have impaired production of UV-B-stimulated D and impaired absorption of food source and supplemental D.65
When the diet lacks calcium, there is an increase in fatty acid synthase, an enzyme that converts calories into fat. Higher levels of calcium with adequate vitamin D inhibit fatty acid synthase while diets low in calcium increase fatty acid synthase by as much as five-fold. In one study, genetically obese rats lost 60 percent of their body fat in six weeks on a diet that had moderate calorie reduction but was high in calcium. All rats supplemented with calcium showed increased body temperature indicating a shift from calorie storage to calorie burning (thermogenesis).61

THE MANY FORMS OF VITAMIN D
There are two types of vitamin D found in nature. Vitamin D2 is formed by the action of UV-B on the plant precursor ergosterol. It is found in plants and in irradiated cow's milk. Vitamin D3 or cholecalciferol is found in animal foods. Both forms of vitamin D have been used successfully to treat rickets and other diseases related to vitamin D insufficiency.
There is no difference in the molecular structure between laboratory-produced or "synthetic" vitamin D2 and D3 and the D2 and D3 found in nature. Both natural and synthetic D2 and D3 can be toxic when taken inappropriately in large amounts. However, vitamin D in food or in human skin always comes with various metabolites or isomers that may have biological benefit. Dr. Price believed that there were as many as 12 metabolites or isomers in the vitamin D found in animal foods. When vitamin D is taken in the form of fish oil, or eaten in foods such as eggs or fish, these metabolites will be present.
When humans take in vitamin D from food or sunlight, it is converted first in the liver to the form 25(OH)D and then in the kidney to 1,25(OH)D. These active forms of vitamin D are available by prescription and are given to patients with liver or kidney failure or those with a hereditary metabolic defect in vitamin-D conversion.

THE RIGHT FATS
Both reduction of saturated fats and increase of polyunsaturated and monounsaturated fats contribute to the current widespread D deficiency.
The assimilation and utilization of vitamin D is influenced by the kinds of fats we consume. Increasing levels of both polyunsaturated and monounsaturated fatty acids in the diet decrease the binding of vitamin D to D-binding proteins. Saturated fats, the kind found in butter, tallow and coconut oil, do not have this effect.66 D-binding proteins are key to local and peripheral actions of vitamin D. This is an important consideration as Americans have dramatically increased their intake of polyunsaturated oils (from commercial vegetable oils) and monounsaturated oils (from olive oil and canola oil) and decreased their intake of saturated fats over the past 100 years.
In traditional diets, saturated fats supplied varying amounts of vitamin D. Thus, both reduction of saturated fats and increase of polyunsaturated and monounsaturated fats contribute to the current widespread D deficiency.
Trans fatty acids, found in margarine and shortenings used in most commercial baked goods, would always be avoided. There is evidence that these fats can interfere with the enzyme systems the body uses to convert vitamin D in the liver.80

VITAMIN D THERAPY
In my clinical practice, I test for vitamin D status first. If D is needed, I try to combine sunlight exposure with vitamin D and mineral supplements.
Single, infrequent, intense, skin exposure to UV-B light not only causes sunburn but also suppresses the immune system. On the other hand, frequent low-level exposure normalizes immune function enhancing NK-cell and T-cell production, reducing abnormal inflammatory responses typical of autoimmune disorders, and reducing occurrences of infectious disease.26;67;68-71 Thus it is important to sunbathe frequently for short periods of time, rather than spend long hours in the sun at infrequent intervals. Adequate UV-B exposure and vitamin D production can be achieved in less time than it takes to cause any redness in the skin. It is never necessary to burn or tan to obtain sufficient vitamin D.
If sunlight is not available in your area because of latitude or season, sunlamps made by Sperti can be used to provide a natural balance of UV-B and UV-A. Used according to instructions, these lamps provide a safe equivalent of sunlight and will not cause burning or even heavy tanning. Tanning beds, on the other hand, are not acceptable as a means of getting your daily dose of vitamin D because they provide high levels of UV-A and very little UV-B.
If you have symptoms of vitamin D insufficiency or are unable to spend time in the sun, consider adding a supplement of 2,000 IU daily. Higher levels may be needed but should be recommended and monitored by your health care practitioner. Two thousand units can be obtained from a concentrated supplement. Both Carlson Labs and Solgar make a 1,000 IU vitamin D supplement naturally derived from fish oil. (Do not attempt to obtain large amounts of vitamin D from cod liver oil alone, as this would supply vitamin A in excessive and possibly toxic amounts.)
Supplementation is safe as long as sarcoidosis, liver or kidney disease is not present and the diet contains adequate calcium, magnesium and other minerals.
Adequate calcium and magnesium, as well as other minerals, are critical parts of vitamin D therapy. Without calcium and magnesium in sufficient quantities, vitamin D supplementation will withdraw calcium from the bone and will allow the uptake of toxic minerals. Do not supplement vitamin D and do not sunbathe unless you are sure you have sufficient calcium and magnesium to meet your daily needs. Weston Price suggested a minimum of 1,200-2,400 mg of calcium daily. Research suggests that 1,200-1,500 mg is adequate as a supplement for most adults, both men and women. (Magnesium intake should be half that of calcium.)
There are only two good sources of calcium in the human diet - dairy products and bone broths.2 If the diet does not contain sufficient amounts, you will need to add supplements. Bone meal or tablets (Solgar or Kal), or calcium carbonate or lactate (Solgar, Kal, Now or Twinlab) are good calcium sources, inexpensive and safe.74 All of these brands have been tested and found to be free of lead and other heavy metals.
In my experience, the forms of calcium given in supplements should be equivalent to those found in food - bone meal as in the broth, and calcium lactate as in milk products. These forms work most efficiently and with the least cost for bone repletion and general repletion of serum calcium status.75 If your diet is high in protein, calcium lactate or carbonate is probably a better source of calcium.
Read the label carefully to see how much elemental calcium is contained in each dose or tablet and make sure to take the right amount. If the label says a serving size is three tablets and contains 1,000 mg of calcium, you must take the full serving size to get that amount.
Higher amounts of calcium are important for anyone diagnosed with bone loss. Total daily calcium as a supplement may range from 1,500 mg to 2,500 mg depending on current bone status and your body size. Make the effort to split up your daily dose. Do not take all your calcium and magnesium once a day. A higher percentage of the calcium dose is absorbed if delivered in smaller, more frequent amounts.82
Expensive "chelated" calciums are not necessary if vitamin D status is adequate. Taking calcium without sufficient D may cause other problems. Vitamin D controls the production of some calcium binding proteins, which are critical to normal calcium utilization.
Patients on vitamin D therapy report a wide range of beneficial results including increased energy and strength, resolution of hormonal problems, weight loss, an end to sugar cravings, blood sugar normalization and improvement of nervous system disorders.
A paradoxical transient and non-complicating hypercalciuria (more calcium in the urine) may occur when the program is first initiated. This resolves quickly when adequate calcium and other minerals are consumed. Two other temporary side effects may occur during the first several months of treatment. One is daytime sleepiness after calcium is taken. This usually resolves itself after about one week. The other condition is the reappearance of pain and discomfort at the site of old injuries, a sign of injury remodeling or proper healing, which may take some time to clear up.

TOXICITY ISSUES
Vitamin programs usually omit vitamin D because of concerns about toxicity. These concerns are valid because vitamin D in all forms can be toxic in pharmacological (drug-like) doses. The dangers of toxicity have not been exaggerated, but the doses needed to result in toxicity have been ill defined with the unfortunate result that many people currently suffer from vitamin D deficiency or insufficiency.
Toxic levels of vitamin D are indicated when blood levels exceed 56 ng/ml or 140 nmol/l for extended periods of time. Levels of 200-300 nmol/l or higher have been seen in several studies using supplementation and quickly resolve when supplementation is stopped. In such cases no long-term problems have been found. Long-term supplementation, without monitoring, can have serious consequences.
Before 1993, there was no affordable and available blood test for vitamin D. Now there is. To avoid problems, anyone engaging in high levels of vitamin D supplementation (more than 2,000 IU) should have periodic blood tests. Don't forget to calculate your total vitamin D intake from all sources - sunlight, food (including vitamin D in milk) and supplements, including cod liver oil.
Dr. Vieth suggests that critical toxicity may occur at doses of 20,000 IU daily and that the Upper Limit (UL) of safety be set at 10,000 IU, rather than the current 2,000 IU. While this may or may not be the definitive marker for safety in healthy persons with no active liver or kidney disease, there is no clinical evidence that long-term supplementation needs to be greater than 3,000-4,000 IU for optimal daily maintenance. This level would be somewhat lower when combined with exposure to UV-B.3;76
Doses used in clinical studies range from as little as 400 IU daily to 10,000-50,000 IU, given either as a single onetime dose or daily, weekly or monthly. Such large doses are given either as a prophylactic or because compliance is considered a problem. There seems to be some evidence that vitamin D works better, without toxicity, when given in lower, more physiologic doses of 2,000-4,000 IU daily rather than as 100,000 IU once a month. However, a single monthly dose of 100,000 IU did replete low level of vitamin D in adolescents during winter.77
In my experience, high, infrequent dosing can lead to problems. In one recent study, blood levels rose from low to extremely high, (more than 300 nmol/l) 24 hours after a 50,000 IU oral dose,65 and then slowly returned to pretreatment suboptimal levels. Clearly this must disrupt normal feedback mechanisms in D and calcium regulation.
Vitamin A can be administered in large, infrequent doses from consumption of animal or fish liver (or injections, used in third world countries to prevent blindness) because we have storage capacity for vitamin A in our livers. Vitamin D is different. It has only a small storage pool in the liver. Our ancestors most definitely did not get vitamin D in large, infrequent doses. While vitamin D is stored in body fat, storage is not sufficient to maintain optimum blood levels during winter months.78 A single exposure to UV-B light will raise levels of vitamin D over the next 24 hours and then return to baseline or slightly higher within seven days.
Historically our requirements for D were satisfied by daily exposure to sunlight and/or daily intake from food. Low fat diets and lack of seafood in the diet further contribute to the current worldwide insufficiency of vitamin D.

SUNLIGHT ON THE INSIDE
If any nutrient incorporates the properties of sunlight, it is vitamin D. The healthy "primitive" peoples that Dr. Price observed not only had broad, round, "sunny" faces, they also had sunny dispositions and optimistic attitudes towards life in spite of many hardships. Typical food intakes for peoples who have not been "civilized" range from 3,000 IU-6,000 IU. Modern intakes are paltry in comparison. The standard American diet provides vitamin D only in very low quantities.
The first step towards redressing some of the ills of civilized life - from depression to road rage, from cavities to osteoporosis - would be to get more light, inside or outside. Vitamin D adds sunlight to life from childhood through the golden years. In nonagenarians and centagenarians high levels of vitamin D in the blood and normal thyroid function were the strongest markers of health and lovevity.79
Whether in the form of sunlight or dietary vitamin D from food and fish oils, optimal levels of the sunshine vitamin allow your body and mind to thrive, even during periods of stress.

ASSESSING VITAMIN D STATUS

BLOOD TESTING: Currently there are two tests available for physicians to assess vitamin D status. One is for the somewhat biologically active precursor 25(OH)D and another for 1,25(OH)D, the most active form, which is converted in the kidney and other organs. The latter is often normal in the blood even when the precursor 25(OH)D is low or deficient. The precursor 25(OH)D is a better marker of vitamin D status (or reserves) than the most active 1,25(OH)D form. It is the optimum level of 25(OH)D that is most strongly associated with general good health. (The test values given in this article are for 25(OH)D.) For many years the acceptable level of 25(OH)D has been at least 9 ng/ml (23 nmol/l). Some researchers believe that 20 ng/ml (50 nmol/l) should be the lower acceptable limit72 but Dr. Vieth presents a large amount of data to support his claim that this is far from optimal.3 Optimal levels are certainly at least 32 ng/ml (80 nmol/l) and preferably closer to 40 ng/ml (100 nmol/l).

SALIVARY pH TESTING: A simpler method of assessing ionized calcium levels has been used by Weston Price, DDS and Carl Reich, MD and has confirmation in current research.73 After determining your serum-D status and undertaking a program of supplementation with vitamin D, calcium and magnesium, morning salivary pH should read 6.8-7.2. Lower values may indicate insufficient vitamin D or low levels of calcium in the diet. Look for pH paper with a range of 5.5-8.0 and increments of 0.2. pH papers with 0.5 degree increments are not sensitive enough to monitor progress. (Note: Do not take more than 2,000 IU of vitamin D without testing and without the supervision of a knowledgeable healthcare practitioner. Calcium can be adjusted within the ranges suggested. Several months of supplementation may be required to show positive results if the deficiency is severe and prolonged.)

* * *

SOURCES
UV-B Meter: Sunsor, Inc. 1-800-492-9615
pH testing Papers: Pike Agri-Lab Supplies. 207 684-5131 or info@pikeagri.com
Carlson Labs Vitamin D. 1-888-880-3055 www.vitaminshoppe.com
Solgar Vitamin D: L & H Vitamins. 1-800-221-1152
Sperti Sunlamps. 1-800-544-3757 www.sperti.com

REFERENCES:
Limited space prevents the inclusion of references. For a complete list of references please call Consumer Health Organization at

Article Information
Volume 23 Issue 12
December,2000

Search
For:
Recommended Books
sidebar Shopping CartContact UsLinksMembershipTotal Health ConventionAudiosVideosBooksArticlesWho We AreHome

 

home | top of page
who we are | total health convention | books & tapes | articles | membership | links | contact us

Site created/maintained by Emitting Media